压缩机组态错误导致喘振的故障分析

撰写人: 刘冲 审核人: 奚成春

一、 设备概述

产品气压缩机总貌如图 1 所示,从左至右依次为汽轮机,低压缸,高压缸:

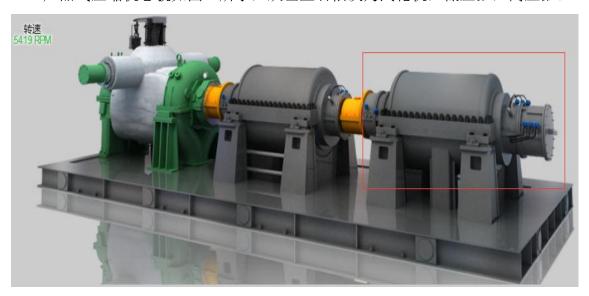


图 1 产品气压缩机总貌图

产品气压缩机高压缸设计技术参数详见表 1:

	高压缸参数表				
额定转速	6016RPM	额定功率	4.624 MW		
进口压力	0.7324 MPaA	出口压力	3.124 MPaA		
设计流量	70830 Nm ₹h	介质	工艺气		
进口温度	39.9℃	进口温度	89.2℃		

表 1 机组主要技术参数

二、 故障现象

机组 2016 年 10 月 16 日启机时,高压缸平稳运行时振值在 6μm ~10μm; 2016 年 10 月 25 日起,高压缸两端四通道振动值出现振动波动现象。

三、 故障分析

图 2、图 3 为高压缸振动趋势图,自 10 月 28 日起高压缸振动值出现明显波动,且振动波动现象没有明显规律,振动波动时振值最高达 $23\mu m$,虽然整体振值不高,但却是平稳运行振动的 2 倍,不利于机组未来长久运行。

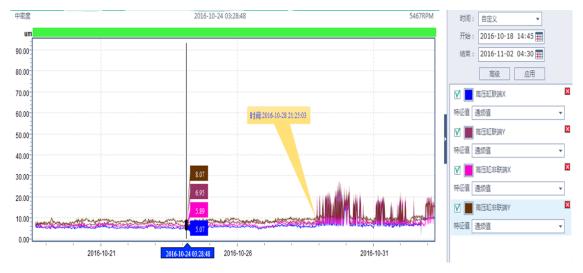


图 2 高压缸通频值趋势图

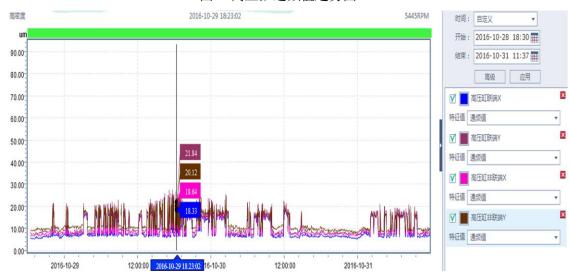
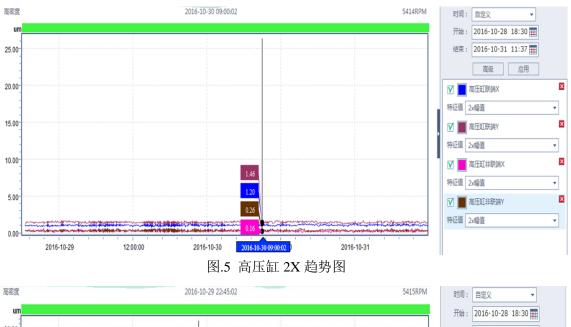



图 3 高压缸振动趋势图

图 4~图 6 为高压缸 1X、2X、0.5X 趋势变化情况,从各频率趋势情况看,1X、2X 趋势稳定,0.5X 趋势与振动波动现象相吻合。

图 4 高压缸 1X 趋势图

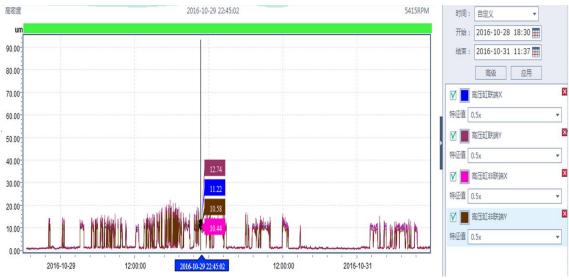
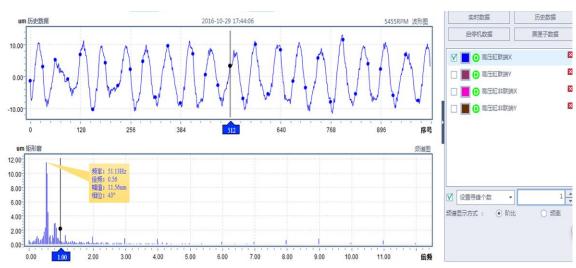



图 6 高压缸 0.5X 趋势图

图 7~图 10 为高压缸振动值上升后的频谱分析图,从波形频谱图中可以看出, 其振动值的波动现象主要以 0.56X 及其附近频率的上升为主,从频谱特征上分析 可能与高压缸内腔中气流状态有关。

图 7 高压缸联端 X 波动频谱图

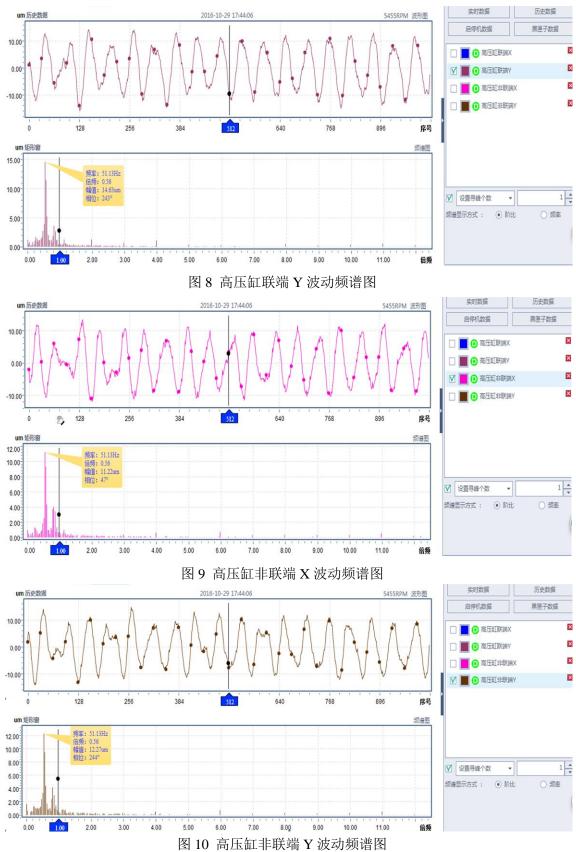


图 11 为高压缸两端轴心轨迹图,其轴心轨迹紊乱,并存在反进动现象,说明其振动上升时刻有摩擦现象发生。

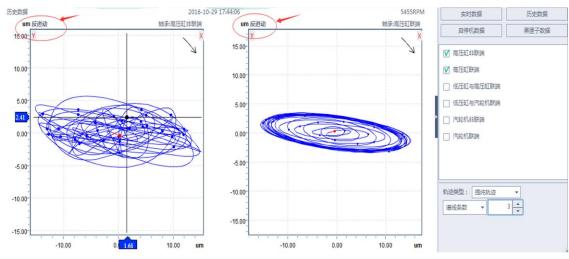


图 11 高压缸两端轴心轨迹图

综合频谱及波动特征看,判断故障原因为高压缸内进气量偏低导致气流扰动, 使转子动态失稳动静件发生碰摩。

根据分析判断的结果,第一时间与现场人员沟通,交流现场工艺情况,发现故障现象与现场 DCS 控制系统中显示的高压缸出口流量显示恰恰相反,目前高压缸流量明显高于设计流量值 如图 12 图 13 对比所示。

高压缸设计参数,其设计流量为 70830 Nm3/hr,目前流量 83456Nm3/hr,明显大于设计值,实际工况显示"超负荷"运行。但是高压缸的实际转速 5421RPM,并未达到机组额度转速 6016RPM;同时我方又进一步询问了现场的汽轮机蒸汽耗量等参数,均处于额定设计值以下。

同时综合故障特征频率,我方提出疑问怀疑现场 DCS 系统中压缩机出口流量数据存在错误,并明显高于实际流量。

	产品气压组	宿机-2	机组参数			
		高压缸参数				
	产品型号:					
	机器位号:					
	工作转速 r/min	6016	旋转方向(从进气端看)	顺时针		
	一阶临界转速 r/min	3747	二阶临界转速 r/min	13873		
	额定功率 MW	4.624	介质	工艺气		
	进口压力 MPaA	0.7324	出口压力 MPaA	3.124		
	进口温度℃	39 9	出口温度℃	89.2		
	设计流量 Nm³/hr	70830	美子跨度 mm	2720		
	转子重量 kg	945.87	止推轴承类型	金斯伯雷式		
	支撑轴承类型	可倾瓦	止推轴承间隙 mm	0.35		
	驱动端支撑轴承间隙 mm	0.21	非驱动端支撑轴承间隙 mm	0.16		
	轴端密封形式	干气密封带中间迷宫密封, 双向旋转				
	轴振动报警值 μm	65.5	轴位移报警值 mm	±0.5		
	轴振动联锁值 μm	88.9	轴位移停机值 mm	±0.7		
	润滑油压力 Mpa	大于等于 0.25	润滑油温度℃	43~48		

图 12 高压缸参数图

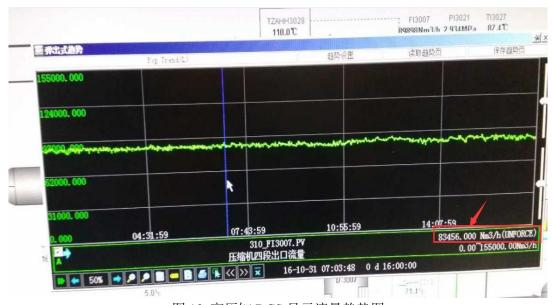


图 13 高压缸 DCS 显示流量趋势图

四、 结论建议

综合频谱特征及现场工艺量情况,给出结论,判断压缩机高压缸振动波动现 象由进气量不足、负荷偏低引起。

根据高压缸设计结构及相关气路布置图,提出将"防喘振阀四回四"阀门打 开,将其开度缓慢提高至适当值,可解决目前振动波动情况。

同时在处理此事件时,我方怀疑该机组 DCS 上流量显示存在错误的问题,提高防喘振阀开度,压缩机流量值将继续升高,建议现场联系 DCS 控制系统厂家,重新设计校准该组态数据。

五、 故障处理

图 14 所示, 11 月 2 日,现场人员采纳我方诊断建议,将"防喘振四回四阀"开度缓慢打开至 20%后,其振动波动现象消失,整体振动幅值低于 10µm。

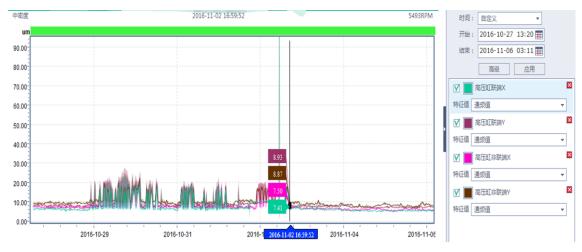


图 14 高压缸调整后振动趋势图

图 15 所示, 处理后, DCS 显示流量增加至 97850 Nm3/h。

后经现场负责人员反馈,该压缩机 DCS 控制系统中流量示数经与厂家联系重新核算后,的确存在组态错误,显示的流量值大约是实际流量的 1.6 倍。

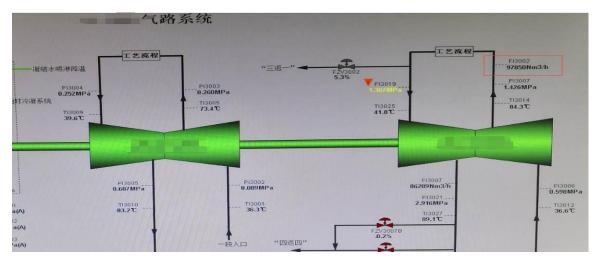


图 15 机组控制系统 DCS 实拍图